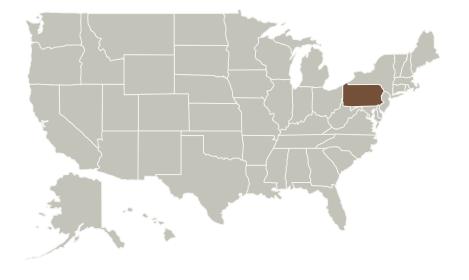
Space Technology Research Grants

Multi-Purpose Artificial Muscle and Sensor Array for Untethered Soft Robots

Completed Technology Project (2014 - 2017)


Project Introduction

"Soft" machines and electronics contain little or no rigid material and remain functional under large elastic deformation. Because they are soft, lightweight, impact resistant, and collapsible, these technologies have the potential to revolutionize robotics for human-machine interaction and space exploration. In this project, my research team and I will accelerate the application of soft machines to space robotics by introducing a "soft robotic tissue" composite embedded with soft elastic sensors, circuit wiring, rigidity-tunable elements, and actuators. These general-purpose elastic films will be millimeters thick and cover a large area. Because the films are soft and stretchable, they can conform to any shape or volume without exerting mechanical resistance. When integrated into clothing, soft robotics, or collapsible structure, the elastic composites can function as "artificial" skin, nervous tissue, or muscle. Potential applications range from strain, pressure, and curvature sensing for shape and contact detection to compact actuators that enable mobility and manipulation without reliance on bulky motors, transmission systems, or pneumatic hardware.

Anticipated Benefits

Potential applications range from strain, pressure, and curvature sensing for shape and contact detection to compact actuators that enable mobility and manipulation without reliance on bulky motors, transmission systems, or pneumatic hardware.

Primary U.S. Work Locations and Key Partners

Multi-Purpose Artificial Muscle and Sensor Array for Untethered Soft Robots

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Project Website:	2	
Organizational Responsibility		
Project Management	2	
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Space Technology Research Grants

Multi-Purpose Artificial Muscle and Sensor Array for Untethered Soft Robots

Completed Technology Project (2014 - 2017)

Organizations Performing Work	Role	Туре	Location
Carnegie Mellon	Lead	Academia	Pittsburgh,
University	Organization		Pennsylvania

Primary U.S. Work Locations

Pennsylvania

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Carnegie Mellon University

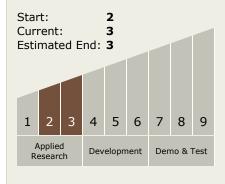
Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer


Program Manager:

Hung D Nguyen

Principal Investigator:

Carmel Majidi

Technology Maturity (TRL)

Space Technology Research Grants

Multi-Purpose Artificial Muscle and Sensor Array for Untethered Soft Robots

Completed Technology Project (2014 - 2017)

Technology Areas

Primary:

- **Target Destinations**

Mars, Others Inside the Solar System

